Methyl-H3K9-binding protein MPP8 mediates E-cadherin gene silencing and promotes tumour cell motility and invasion.

نویسندگان

  • Kenji Kokura
  • Lidong Sun
  • Mark T Bedford
  • Jia Fang
چکیده

H3K9 methylation has been linked to a variety of biological processes including position-effect variegation, heterochromatin formation and transcriptional regulation. To further understand the function of H3K9 methylation, we have identified and characterized MPP8 as a methyl-H3K9-binding protein. MPP8 displays an elevated expression pattern in various human carcinoma cells, whereas knocking-down MPP8 results in the loss of cellular mesenchymal marker as well as the reduction of tumour cell migration and invasiveness, suggesting that MPP8 contributes to tumour progression. Following characterization demonstrates that MPP8 targets the E-cadherin gene promoter and modulates the expression of this key regulator of cell behaviour and tumour progression through its methyl-H3K9 binding. Furthermore, MPP8 interacts with H3K9 methyltransferases GLP and ESET, as well as DNA methyltransferase 3A. MPP8 knockdown decreases DNA methylation on E-cadherin CpG island attended by the loss of DNMT3A localization, indicating MPP8 also directs DNA methylation. Together, our results suggest a model by which MPP8 recognizes methyl-H3K9 marks and directs DNA methylation to repress tumour suppressor gene expression and, in turn, has an important function in epithelial-to-mesenchymal transition and metastasis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scientific Report MPP8 and SIRT1 crosstalk in E-cadherin gene silencing and epithelial–mesenchymal transition

As a critical developmental process, epithelial–mesenchymal transition (EMT) involves complex transcriptional reprogramming and has been closely linked to malignant progression. Although various epigenetic modifications, such as histone deacetylation and H3K9 methylation, have been implicated in this process, how they are coordinated remains elusive. We recently revealed that MPP8 couples H3K9 ...

متن کامل

MPP8 and SIRT1 crosstalk in E-cadherin gene silencing and epithelial-mesenchymal transition.

As a critical developmental process, epithelial-mesenchymal transition (EMT) involves complex transcriptional reprogramming and has been closely linked to malignant progression. Although various epigenetic modifications, such as histone deacetylation and H3K9 methylation, have been implicated in this process, how they are coordinated remains elusive. We recently revealed that MPP8 couples H3K9 ...

متن کامل

Structural Basis for Specific Binding of Human MPP8 Chromodomain to Histone H3 Methylated at Lysine 9

BACKGROUND M-phase phosphoprotein 8 (MPP8) was initially identified to be a component of the RanBPM-containing large protein complex, and has recently been shown to bind to methylated H3K9 both in vivo and in vitro. MPP8 binding to methylated H3K9 is suggested to recruit the H3K9 methyltransferases GLP and ESET, and DNA methyltransferase 3A to the promoter of the E-cadherin gene, mediating the ...

متن کامل

E-cadherin Promoter Methylation Comparison and Correlation with the Pathological Features of the Squamous Cell Carcinoma of Esophagus in the High Risk Region

E-cadherin is among tumor suppressor genes which mostly subjects to the down-regulation in squamous cell carcinoma of esophagus (SCCE). The gene is tightly associated with the tumor invasion and metastasis in multiple human cancers, especially SCCE. CpG islands’ methylation in the promoter region of E-cadherin is among the mechanisms that have been suggested for the E-cadherin silencing, howeve...

متن کامل

RhoA mediates cyclooxygenase-2 signaling to disrupt the formation of adherens junctions and increase cell motility.

Cyclooxygenase-2 (COX-2) represents an important target for treatment and prevention of colorectal cancer. Although COX-2 signaling is implicated in promoting tumor cell growth and invasion, the molecular mechanisms that mediate these processes are largely unknown. In this study, we show that the RhoA pathway mediates COX-2 signaling to disrupt the formation of adherens junctions and increase c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The EMBO journal

دوره 29 21  شماره 

صفحات  -

تاریخ انتشار 2010